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Virtual Electrode analyses

Virtual electrode analyses offer a way to take advantage of the > 1 ms temporal resolution of MEG. Our aim was to investigate where
in time, relative to stimulus presentation, the power changes identified by the beamformer occured.
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Beamformer localisations were determined based on total power (i.e. phase-locked and non-phase-locked activity) changes. Virtual
electrode analyses enable us to carry out statistical analyses [see Cornelissen et al. (2009)] on both the phase-locked and non-
phase-locked activity at each location identified by the beamformer.
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.| Figure 3. Non-phase-locked (induced) Stockwell Transforms generated from areas r. ITG and |. STG identified in the beamforming analyses.
T ' These Stockwell Transforms show differences in non-phase-locked activity generated by noise-vocoded words and vocoded noise.
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Discussion

Aims d by amformer image
'y ere calcula valent We found evidence that complex temporal envelopes, in this case noise-vocoded words, are represented on multiple time scales in the
. : _ human brain when participants are required to attend to speech stimuli.
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tgfnn git]ral ’ S'g?ér?r:jg:r?d o ency bands. u The beamformer localisations (based on total power changes) show that the temporal envelope of speech is represented bilaterally in
POl ' >-vocoded words and vocodec nditions were temporal areas. In extra-temporal areas, there is evidence of left hemisphere lateralisation of speech temporal envelope processing.
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Increases in power in the delta frequency band were found bilaterally in both temporal and extra-
temporal areas. Increases in power in the theta frequency band were found in the left temporal
lobe and increases in gamma power were found in the right inferior temporal lobe. However, the
functional asymmetry in the localisations based on theta and gamma power are inconsistent with
the AST model (e.g. Poeppel, 2003).
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Virtual electrode analyses suggest that the beamformer localisations were based on changes in
non-phase-locked (induced) activity. The VE analyses also suggest that although beamforming
localised brain areas based on the power in a given frequency band, there may also be activity in
other frequency bands that did not result in significant power changes in the beamformer
analyses.
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icts th | p locking to the temporal envelope of speech by repeatedly presenting the same/similar sentence
are s L < material. In the present study participants were presented with 120 different noise-vocoded words.
e-VOC ' 2" The average of 120 different speech temporal envelopes would result in essentially a flat

Oble temporal envelope. Therefore it is unlikely that there would be phase-locked activity to the speech
sphe temporal envelope given the experimental design used in this study.
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yf sp Phase-locking is an important mechanism for processing sounds that change over time. However,
op | es , the results from the present study suggest that non-phase-locked activity also contributes to the
(e.g et al., 1994 processing of the temporal envelope of speech.
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s stimulus. Figure 2. Group beamforming results for the beamformer contrasts (noise-vocoded words - vocoded noise).
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